Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Med Educ Online ; 27(1): 2067024, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1819703

ABSTRACT

Medical schools initially removed students from clinical rotations at the outset of COVID-19 for safety reasons when students were eager to help and health systems needed personnel. In response, we rapidly implemented an innovative 2-week rotation for medical students to participate in health systems operations and care through remote efforts including triage and resource allocation. The curriculum also contained online self-paced educational modules covering topics including ethics, crisis standards of care, and modeling. As the health system needs shifted, so too did learners' work. One hundred and twenty-five 3rd and 4th-year students completed the experience over 10 months. Learner satisfaction, confidence, and knowledge assessed through pre- and post-rotation surveys showed statistically significant and educationally meaningful improvement. A near uniform change greater than 1 point (on a 5-point scale) was demonstrated upon rotation completion. Blending health systems and educational structures to meet the needs of both creates unique opportunities to educate students in new ways.


Subject(s)
COVID-19 , Education, Medical, Undergraduate , Students, Medical , Curriculum , Humans , Patient Care
2.
EClinicalMedicine ; 37: 100957, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1272392

ABSTRACT

BACKGROUND: The SARS-CoV-2 virus enters cells via Angiotensin-converting enzyme 2 (ACE2), disrupting the renin-angiotensin-aldosterone axis, potentially contributing to lung injury. Treatment with angiotensin receptor blockers (ARBs), such as losartan, may mitigate these effects, though induction of ACE2 could increase viral entry, replication, and worsen disease. METHODS: This study represents a placebo-controlled blinded randomized clinical trial (RCT) to test the efficacy of losartan on outpatients with COVID-19 across three hospital systems with numerous community sites in Minnesota, U.S. Participants included symptomatic outpatients with COVID-19 not already taking ACE-inhibitors or ARBs, enrolled within 7 days of symptom onset. Patients were randomized to 1:1 losartan (25 mg orally twice daily unless estimated glomerular filtration rate, eGFR, was reduced, when dosing was reduced to once daily) versus placebo for 10 days, and all patients and outcome assesors were blinded. The primary outcome was all-cause hospitalization within 15 days. Secondary outcomes included functional status, dyspnea, temperature, and viral load. (clinicatrials.gov, NCT04311177, closed to new participants). FINDINGS: From April to November 2020, 117 participants were randomized 58 to losartan and 59 to placebo, and all were analyzed under intent to treat principles. The primary outcome did not differ significantly between the two arms based on Barnard's test [losartan arm: 3 events (5.2% 95% CI 1.1, 14.4%) versus placebo arm: 1 event (1.7%; 95% CI 0.0, 9.1%)]; proportion difference -3.5% (95% CI -13.2, 4.8%); p = 0.32]. Viral loads were not statistically different between treatment groups at any time point. Adverse events per 10 patient days did not differ signifcantly [0.33 (95% CI 0.22-0.49) for losartan vs. 0.37 (95% CI 0.25-0.55) for placebo]. Due to a lower than expected hospitalization rate and low likelihood of a clinically important treatment effect, the trial was terminated early. INTERPRETATION: In this multicenter blinded RCT for outpatients with mild symptomatic COVID-19 disease, losartan did not reduce hospitalizations, though assessment was limited by low event rate. Importantly, viral load was not statistically affected by treatment. This study does not support initiation of losartan for low-risk outpatients.

3.
Eur Respir J ; 56(1)2020 07.
Article in English | MEDLINE | ID: covidwho-143888

ABSTRACT

IMPORTANCE: Coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic with significant morbidity and mortality since first appearing in Wuhan, China, in late 2019. As many countries are grappling with the onset of their epidemics, pharmacotherapeutics remain lacking. The window of opportunity to mitigate downstream morbidity and mortality is narrow but remains open. The renin-angiotensin-aldosterone system (RAAS) is crucial to the homeostasis of both the cardiovascular and respiratory systems. Importantly, SARS-CoV-2 utilises and interrupts this pathway directly, which could be described as the renin-angiotensin-aldosterone-SARS-CoV (RAAS-SCoV) axis. There exists significant controversy and confusion surrounding how anti-hypertensive agents might function along this pathway. This review explores the current state of knowledge regarding the RAAS-SCoV axis (informed by prior studies of SARS-CoV), how this relates to our currently evolving pandemic, and how these insights might guide our next steps in an evidence-based manner. OBSERVATIONS: This review discusses the role of the RAAS-SCoV axis in acute lung injury and the effects, risks and benefits of pharmacological modification of this axis. There may be an opportunity to leverage the different aspects of RAAS inhibitors to mitigate indirect viral-induced lung injury. Concerns have been raised that such modulation might exacerbate the disease. While relevant preclinical, experimental models to date favour a protective effect of RAAS-SCoV axis inhibition on both lung injury and survival, clinical data related to the role of RAAS modulation in the setting of SARS-CoV-2 remain limited. CONCLUSION: Proposed interventions for SARS-CoV-2 predominantly focus on viral microbiology and aim to inhibit viral cellular injury. While these therapies are promising, immediate use may not be feasible, and the time window of their efficacy remains a major unanswered question. An alternative approach is the modulation of the specific downstream pathophysiological effects caused by the virus that lead to morbidity and mortality. We propose a preponderance of evidence that supports clinical equipoise regarding the efficacy of RAAS-based interventions, and the imminent need for a multisite randomised controlled clinical trial to evaluate the inhibition of the RAAS-SCoV axis on acute lung injury in COVID-19.


Subject(s)
Acute Lung Injury/metabolism , Angiotensin II/metabolism , Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Renin-Angiotensin System/physiology , Acute Lung Injury/physiopathology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , COVID-19 , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Humans , Pandemics , Pneumonia/metabolism , Pneumonia/physiopathology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2 , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL